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ScienceDirect
Covert spatial attention allows us to prioritize visual processing

at relevant locations. A fast growing literature suggests that

alpha-band (8–12 Hz) oscillations play a key role in this core

cognitive process. It is clear that alpha-band activity tracks

both the locus and timing of covert spatial orienting. There is

limited evidence, however, for the widely embraced view that

alpha oscillations suppress irrelevant visual information during

spatial selection. Extant evidence is equally compatible with an

account in which alpha activity enables spatial selection

through signal enhancement rather than distractor

suppression. Thus, more work is needed to characterize the

computational role of alpha activity in spatial attention.
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Alpha-band activity tracks covert spatial
attention
Our capacity to process visual information is limited.

Thus, we must prioritize processing at relevant locations.

Covert spatial attention allows us to select relevant loca-

tions without moving our eyes, enhancing processing at

the attended location [1]. Human electroencephalogram

(EEG) studies have long linked alpha-band (8–12 Hz)

oscillations with covert spatial attention [2–7]. When

attention is deployed to one side of space, posterior

alpha-band power is reduced at electrodes over the con-

tralateral hemisphere, which processes the attended side

of space [4–6]. Further work has shown that the scalp

topography of alpha power tracks more than just the

relevant side of space [4,7]. For example, Rihs et al. [7]

showed that the topography of alpha power on the scalp

covaried with the specific location that was cued when
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observers were instructed to attend one of eight possible

locations around a fixation point.

Recently, multivariate analysis techniques have enabled

a more refined quantification of the spatial information

present in alpha activity. We and others have used an

inverted encoding model (IEM) [8–10] to track the spatial

and temporal dynamics of covert attention [11��,12�].
This approach (Figure 1) assumes that alpha power at

each electrode reflects the combined activity of a number

of spatially selective channels (or neuronal populations).

By first estimating the relative contribution of each of

these spatial channels to the response measured at each

electrode, it is then possible to invert the model to esti-

mate the profile of activity across the channels from the

pattern of alpha power across electrodes. This results in a

graded profile of activity (a channel tuning function or CTF)

that peaks at the channel tuned for the attended location.

These alpha CTFs reflect the spatial selectivity of the

population-level activity that is measured with EEG [13].

In spatial-cueing tasks, alpha CTFs track covert spatial

orienting to the precise location that is cued, starting

several hundred milliseconds after the onset of a central

cue (Figure 2a) [11��,12�]. During visual search, the time-

course of alpha CTFs tracks trial-by-trial variations in the

latency of target selection, as measured with response

times (Figure 2b) [11��]. Thus, alpha activity is tightly

linked with both the locus and timing of covert spatial

selection (also see Box 1).

Does alpha-band activity suppress irrelevant
visual inputs? The jury is out
What computational role does alpha activity play in covert

attention? The modal view is that alpha activity mediates

the suppression or gating of irrelevant visual inputs

[2,3��,14–16]. This view falls in line with the consensus

that distractor exclusion is a critical component of visual

attention [17]. However, it is broadly acknowledged that

improved perception at a relevant location can also occur

via signal enhancement, which directly improves processing

at attended locations [1,18]. While many studies have

shown that alpha activity tracks the attended positions in

the visual field [4–6], even in the absence of irrelevant

distractors [5,7,19], recent work has cast doubt on whether

alpha activity tracks locations at which distractors are

expected [20��]. At first glance, this may seem to point

towards a role in signal enhancement rather than distrac-

tor suppression. However, a neural signal that suppresses

interference at all unattended locations may also enable

precise tracking of target position. Thus, the fact that
www.sciencedirect.com
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Reconstructing alpha channel tuning functions with an inverted encoding model. Inverted encoding models (IEMs) are a powerful tool for

reconstructing population-level representations from aggregate measures of neural activity (e.g. EEG or fMRI). We and others have used the IEM

approach to reconstruct spatially selective channel tuning functions (CTFs) from the scalp distribution of alpha-band power [11��,12�]. This approach

assumes that alpha-band power at each electrode reflects the combined activity of a number of spatially tuned channels (or neuronal populations),

each tuned for a different spatial position. Each curve shown in (a) shows the predicted response of each of eight spatially selective channels (C1–C8)

across eight possible attended locations (right). The IEM analysis proceeds in two stages. In the training phase (b), we estimate the relative contribution

of each channel to the response measured at each electrode (called channel weights). For a given attended location, the predicted response of each

channel can be derived from the functions in (a). The example shown here is for an attended location at 45�. Because the predicted channel responses

vary as a function of the attended location, by varying the attended location it is possible to estimate how strongly each channel contributes to activity

measured at each electrode (i.e. the channel weights). In the test phase (c), using an independent set of data, we use the channel weights obtained in

the training phase to estimate the profile of channel responses given the observed pattern of activity across the scalp. The example shown here is for

an attended location at 135�. The resulting CTF reflects the spatial selectivity of population-level alpha-band activity. Adapted from Ref. [11��].
alpha activity precisely tracks the selected locations —

but not the locations of distractors — still leaves open the

question of how alpha activity supports selective attention

(also see Box 2).
www.sciencedirect.com 
In support of the distractor suppression account, past work

has emphasized the finding in spatial-cueing tasks that

alpha power decreases contralateral to the cued location

and/or increases contralateral to the uncued location [4–7].
Current Opinion in Psychology 2019, 29:34–40
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Figure 2
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Alpha-band oscillations enable spatially and temporally resolved tracking of covert spatial attention. (a) Alpha CTFs precisely track where attention is

deployed following an attentional cue. Observers performed a spatial-cueing task (left). A central cue (a cross with one uniquely colored arm) directed

observers to attend one of eight place holders. After delay, a target digit was presented among distractor letters and then masked with a pound sign. The

plot on the right shows the reconstructed alpha CTFs across time for each of eight locations. A channel offset of 0� corresponds to the channel tuned for the

cued location. The yellow band in each subplot shows the peak channel response, which tracked the cued location start around 300 ms after cue onset. (b)

The time course of alpha-band CTFs track the latency of target selection during visual search. Observers searched for a target (a vertical or horizontal bar)

among distractors and reported the orientation of the target (left). The plots on the right show the selectivity of target-related CTFs as for easy and hard

search (upper) and as a function of response times regardless of search condition (lower). Spatially selective activity that tracked the target position emerged

earlier during easy search than during hard search, and earlier on trials with fast RTs than on trials with slow RTs. Adapted from Ref. [11��].
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Box 2 Pre-stimulus alpha power and perception.

To directly examine how alpha-band power influences visual proces-

sing, researchers have tested whether pre-stimulus alpha power pre-

dicts perceptual outcomes. Early studies found that near-threshold

stimuli are more readily detected when alpha power is low [40,41],

which was taken as evidence that low alpha power improves stimulus

perception [40,42]. However, recent work has challenged this view.

Two recent studies [43��,44��] used a signal detection analysis to show

that fluctuations in alpha power predict response bias (i.e. how likely

the observer is to report a stimulus) instead of perceptual sensitivity (i.

e. the degree to which signal and noise can be discriminated during

perception). Thus, alpha power predicted a shift in response thresholds
This finding has been presented as suggesting that higher

alpha power contralateral to the uncued location reflects

increased suppression of irrelevant stimuli [2,3��,14–16].
But this empirical pattern is equally compatible with the

view that reduced alpha-band power reflects signal

enhancement. Another finding that has motivated a sup-

pression account of alpha activity is the inverse relationship

between alpha power and other neural signals such as

spiking activity [21] and gamma-band oscillations [22].

However, these findings do not establish whether alpha

activity influences the quality of sensory representations
because the information content of neural activity can be

disconnected from the overall amount of neural activity

(e.g. Ref. [23]). For example, inhibition of specific neural

units could improve the fidelity of a sensory representation.

Thus, it is unclear whether these inverse relationships

reflect an inverse relationship between alpha power and

the strength of sensory representations. Even though there

is some evidence for an inverse relationship between alpha

power and the strength of sensory representations mea-

sured via BOLD responses in visual cortex [24], these data

are still compatible with the hypothesis that decreased

alpha power reflects a relative increase in signal enhance-

ment over the attended regions.

In our view, a more diagnostic approach for distinguishing

between suppression and enhancement accounts is to use

experimental designs that selectively manipulate the pro-

cess of interest. If the degree of distractor suppression can

be manipulated while signal enhancement is held constant,

this provides an opportunity to link-specific neural signals

with suppression per se. For example, Serences et al. [25]

used this approach to test whether preparatory activity

measured with fMRI reflected distractor exclusion. Spatial

attention increases baseline activity measured with fMRI

in visual cortex tuned for the attended location [26,27]. To

test whether this preparatory activity reflects distractor

exclusion, Serences et al. varied the probability that dis-

tractors accompanied visual targets, a manipulation that has

been shown to increase resistance to distractor interference

without affecting performance with distractor-free displays

[28]. The selective effect of the probability manipulation

suggests a specific effect on distractor exclusion, because
Box 1 Alpha-band activity tracks spatial working memories.

Working memory allows us to hold goal-relevant information in an

‘online’ state. It is thoughts that there is considerable functional

overlap between spatial attention and spatial working memory

[33,34]. Consistent with this view, recent work has shown that alpha

activity also precisely tracks spatial locations maintained in working

memory [35��,36�,37,38,39�]. Interestingly, alpha activity encodes

the location of memoranda even when spatial position is irrelevant to

the task [36�,39�], suggesting that space may be an integral com-

ponent of visual working memories. These findings provide further

evidence that alpha oscillations play a central role in spatial

cognition.

www.sciencedirect.com 
changes in that process shouldnotaffect performance when

there are no distractors to exclude. Critically, Serences et al.
found that preparatory activity, measured via retintopic

changes in the amplitude of the BOLD signal, was greater

when the probability of distractors was higher, suggesting

that this preparatory activity plays a specific role in dis-

tractor exclusion. Therefore, this work provides a clear

example of how preparatory activity can be unambiguously

linked with distractor exclusion.

Of the substantial body of work that links alpha-band

power with covert attention, only a few studies have

attempted to selectively manipulate distractor suppres-

sion [19,20��,29,30�]. In one study, Kelly et al. [19] cued

the location of an upcoming target. In some blocks, the

target appeared alone, while in others a distractor

appeared in the uncued hemifield. Kelly et al. reasoned

that if spatially-specific alpha-band power reflects dis-

tractor exclusion, then lateralized alpha-band should be

stronger when observers expect a distractor than when no

distractor is expected. Interestingly, lateralization of

alpha-band power was weaker when distractors were

expected (also see Ref. [29], which found no effect of

the strength of distractors on the lateralization of alpha-

band power in a somatosensory task). However, one

caveat here is that there was no behavioral evidence that

distractor exclusion was increased in blocks that con-

tained distractors. Thus, the failure to find stronger alpha

lateralization when a distractor was expected may not

provide strong evidence against a distractor exclusion

account.
rather than changes in the sensitivity of visual encoding. Consistent

with this view, others have found that alpha power does not predict

performance in visual discrimination tasks [44��,45–47]. A key limitation

of these findings, however, is that they focused on fluctuations in power

without manipulating the attended location, in contrast to the work that

we review in this article that focused on spatially selective modula-

tions of alpha power following spatial cues. These two approaches may

not tap into the same process, given the likelihood that alpha oscilla-

tions reflect more than a single aspect of cognitive processing (e.g. Ref.

[48�]). For example, fluctuations in pre-stimulus alpha power could be

tracking global changes in visual processing rather than something

directly linked with spatial attention per se. Future work that combines

these approaches to examine pre-stimulus fluctuations in spatially

selective alpha activity could help to determine whether these pre-

stimulus effects are directly linked with changes in spatial selection.

Current Opinion in Psychology 2019, 29:34–40
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Händel et al. [31] took a different approach. Rather than

manipulating the degree of distractor exclusion, they

sought to test whether the degree of lateralization of

alpha-band activity predicted individual differences in

distractor exclusion. The authors reasoned that if later-

alized alpha-band activity predicted processing of the

stimulus in the uncued hemifield (on invalidly cued trials)

but not processing of the stimulus in the cued hemifield

(on validly cued trials), then this would provide evidence

in favor of the distractor exclusion account of alpha-band

power. Their results followed this pattern, but there was

considerably more variability in performance for the

uncued stimulus than for the cued stimulus. Thus, the

failure to detect a relationship between alpha-band lat-

eralization and processing of the cued stimulus may

reflect a restriction of range for performance at the cued

position.

In another study, Noonan et al. [20��] successfully manip-

ulated distractor exclusion. Observers responded to a

target stimulus. Noonan et al. varied whether or not the

target was accompanied by a distractor in different blocks

of trials, and found that the presence of a distractor

reliably slowed response times. In some blocks, Noonan

et al. cued the location of the target or the distractor in

advance. Unsurprisingly, a spatial cue indicating the

target location speeded responses (compared to trials with

no cue). Interestingly, a spatial cue indicating the dis-
tractor location also speeded responses (again, compared

to trials with no cue). Critically, this distractor-cueing

benefit was not seen when the distractor was absent,

providing clear evidence that cues indicating the location

of a distractor selectively enabled distractor exclusion.

Strikingly, Noonan et al. found that alpha-band activity

tracked the cued location when the target location was

cued but not when the distractor location was cued,

suggesting that alpha-band activity plays a role in signal

enhancement but providing no evidence for a role in

distractor exclusion.

To summarize, while it is clearly the modal view that

alpha activity reflects the suppression of irrelevant visual

information, the evidence is equivocal. Extant work link-

ing alpha activity with spatial attention is compatible with

an account in which alpha supports target selection via

signal enhancement. Thus, there is strong motivation for

further work in which alpha-band activity is assessed

during selective manipulations of different aspects of

spatial selection, preferably with analytic approaches that

focus on spatially selective alpha-band activity rather than

overall power in that frequency band (see Box 2). For

example, given prior work that has reported covariations

of alpha power and BOLD activity [32], it may be

worthwhile to use an approach similar to that of Serences

et al. [25] to examine how alpha activity is affected by

selective changes in distractor exclusion. Until such work

is conducted, our view is that the jury is still out regarding
Current Opinion in Psychology 2019, 29:34–40 
the computational role played by alpha activity during

spatial selection.
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